Developmental changes in medial auditory thalamic contributions to associative motor learning.

نویسندگان

  • Ka H Ng
  • John H Freeman
چکیده

Eyeblink conditioning (EBC) was used in the current study to examine the mechanisms underlying the ontogeny of associative motor learning in rats. Eyeblink conditioning emerges ontogenetically between postnatal day 17 (P17) and P24 in rats. Previous studies used electrical stimulation to show that the ontogeny of EBC is influenced by developmental changes in input from the medial auditory thalamus to the pontine nuclei, which in turn affects input to the cerebellum. The current study used tetrode recordings to examine the ontogeny of medial auditory thalamic sensory responses to the conditioned stimulus (CS) and learning-related activity during EBC. Rat pups were implanted with multiple tetrodes in the medial nucleus of the medial geniculate (MGm) and suprageniculate (SG) and trained on delay EBC on P17-P19, P24-P26, or P31-P33 while recording spike activity. Developmental changes in MGm and SG sensory-related activity were found during a pretraining session with unpaired presentations of the auditory CS and periorbital stimulation unconditioned stimulus (US). Substantial developmental changes were observed in learning-related activity in the MGm and SG during CS-US paired training. The ontogenetic changes in learning-related activity may be related to developmental changes in input to the medial auditory thalamus from the amygdala and cerebellum. The findings suggest that the ontogeny of associative motor learning involves developmental changes in sensory input to the thalamus, amygdala input to the thalamus, thalamic input to the pontine nuclei, and cerebellar feedback to the thalamus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotional and behavioral correlates of mediodorsal thalamic neurons during associative learning in rats.

Neuronal activity was recorded from the mediodorsal thalamic nucleus (MD) of behaving rats that were trained to lick a protruding spout just after a conditioned stimulus to obtain reward or to avoid shock. Conditioned stimuli included both elemental (auditory or visual stimuli) and configural (simultaneous presentation of auditory and visual stimuli predicting reward outcome opposite that predi...

متن کامل

Motor Imagery of Typical and High-Functioning Autism Spectrum Disorder Children: Developmental Changes

Introduction: There are significant interactions between motor and cognitive development through life span. Investigation of cognitive processes and behavioral infrastructure is very valuable, so the present study aimed to determine the developmental changes of motor imagery in typical and high functioning autism spectrum disorder children aged 8 to 12 years. Methods: The present study was a s...

متن کامل

Motor disturbances and thalamic electrical power of frequency bands' improve by grape seed extract in animal model of Parkinson's disease

Objective: Previous studies showed that grape seed extract (GSE) is an excellent natural substance with potent antioxidant effect and free radical scavenger. This study aimed to evaluate the effect of GSE on motor dysfunctions and thalamic local Electroencephalography (EEG) frequency bands' powers in rats with Parkinson's disease (PD). Materials and Methods: In this study 8 µg 6-hydroxydopamin...

متن کامل

Corticofugal system and processing of behaviorally relevant sounds : Perspective

The auditory system consists of the ascending and descending (corticofugal) systems. One of the major functions of the corticofugal system is the adjustment and improvement of auditory signal processing in the subcortical auditory nuclei, i.e., the adjustment and improvement of the input of cortical neurons. The corticofugal system evokes a small, short-term reorganization (plasticity) of the i...

متن کامل

Learning-induced changes of auditory receptive fields.

Classical conditioning specifically modifies receptive fields in primary and secondary auditory cortical areas to favor the frequency of a tone signal over other frequencies, including tuning shifts toward, or to, this frequency. This plasticity of receptive fields is associative and highly specific, can develop very rapidly, can be expressed under anesthesia and can be maintained indefinitely....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 20  شماره 

صفحات  -

تاریخ انتشار 2012